Разработчики: | Abbyy Россия |
Дата премьеры системы: | 2020/06/16 |
Технологии: | Средства разработки приложений |
Основная статья: Машинное обучение (Machine Learning)
2021: NeoML 2.0 с поддержкой Python
22 июня 2021 года компания ABBYY сообщила об обновлении фреймворка NeoML. Теперь c открытой кросс-платформенной библиотекой ABBYY могут работать пользователи Python – одного из самых популярных языков программирования для анализа данных и машинного обучения, в том числе для исследовательских задач. С NeoML представители бизнеса и научного сообщества смогут дополнить приложения возможностями идентификации объектов, классификации, регрессии, кластеризации, семантической сегментации, верификации, используя для этих задач самые актуальные платформы и архитектуры. Библиотека поддерживает около 20 методов машинного обучения, в том числе – 10 дополнительных сетевых слоев и дополнительные методы оптимизации.
В данной версии NeoML скорость выполнения классических алгоритмов на разных задачах выросла до 10 раз, а обучение нейросетей стало быстрее на 30%. Такая оптимизация особенно полезна специалистам и компаниям, которые обучают ML-модели в облачных сервисах, а также позволит упростить разработку мобильных приложений для клиентов. Кроме того, данная версия поддерживает автоматическое вычисление градиентов, важную функцию для быстрой реализации нейронных сетей различных архитектур. Также NeoML 2.0 поддерживает работу в последних окружениях: на процессорах Apple M1 и графических процессорах в среде Linux, в том числе на интегрированных моделях от Intel, что существенно расширяет возможности разработки приложений для клиентов.
![]() | Открытый код – главный источник инноваций в разработке современного ПО. Именно поэтому мы стремимся к тому, чтобы библиотека NeoML стала доступной для еще более большего круга пользователей. Python – универсальный язык программирования, удобный для интеграции с различными информационными системами. В создании интерфейса для Python активно участвовали не только сотрудники ABBYY, но и специалисты из разных стран, что свидетельствует об интересе OSS-сообщества к нашей библиотеке и ее возможностям. Так, в разработке обертки для Python участвовал Александр Боргардт, глава Open source-сообщества DuckStax, – комментирует Владимир Юнев, главный архитектор ABBYY. | ![]() |
![]() | На мой взгляд, есть множество задач, в решении которых библиотека ABBYY NeoML дает больше возможностей наряду с другими популярными фреймворками. В процессе оказания помощи при разработке коннектора к Python я обнаружил ряд возможностей для запуска инференса в разных режимах и с разными системами ограничений, также производительность инференса очень порадовала во многих режимах. А благодаря ключевым особенностям архитектуры библиотеку можно применять в средах, где существует необходимость собраться под десктопы, мобилки, сервера или даже в wasm. NeoML позволяет нативно запустить инференс под все Apple-устройства. Благодаря качественной интеграции с Python не только прошаренные С++ разработчики могут увидеть потенциал библиотеки NeoML, но и крутые DL-инженеры смогут прочувствовать ее мощь, – комментирует Александр Боргардт, community leader Duckstax.com. | ![]() |
NeoML уже используют в своих проектах разработчики и исследователи из США, Канады, Германии, Нидерландов, России, Бразилии, Китая, Индии, Вьетнама, Южной Кореи и других стран. Инструменты библиотеки также применяются во всех продуктах ABBYY, включая мобильные приложения. К примеру, благодаря NeoML в мобильном сканере ABBYY появилась возможность распознавать 7 различных типов документов, искать текст на изображениях и измерять объекты с помощью AR-линейки.Цифровизация здравоохранения в России: драйверы и тренды рынка, крупнейшие ИТ-поставщики. Обзор TAdviser и Zdrav.Expert
Доступ к исходным кодам можно получить на официальном репозитории проекта на GitHub. NeoML можно использовать на Windows, Linux, macOS, iOS и Android. Библиотека поддерживает процессоры CPU и GPU. Открытый код фреймворка предоставляется под лицензией Apache2.0License. ABBYY продолжит увеличивать количество доступных алгоритмов и архитектур, а также повышать скорость работы библиотеки.
2020: Анонс библиотеки машинного обучения с открытым кодом
16 июня 2020 года компания ABBYY представила NeoML – библиотеку машинного обучения с открытым кодом, доступную на платформе GitHub. Библиотека поддерживает современные методы как глубокого, так и классического машинного обучения для решения различных задач – например, удаленной идентификации, прогнозной аналитики, управления рисками и других. Главная возможность NeoML – возможность создавать бизнес-приложения, которые одинаково эффективно работают в облачной среде, на десктопах и мобильных устройствах.
По информации компании, с помощью NeoML компании смогут дополнить приложения возможностями идентификации объектов, классификации, семантической сегментации, верификации, прогнозирования и так далее. Например, банки могут разрабатывать, обучать и применять модели для оценки кредитных рисков и предсказания оттока клиентов, телеком-операторы – анализировать успех массовых маркетинговых кампаний, ритейл и FMCG – разрабатывать сервисы для регистрации клиентов, например, в программах лояльности.
![]() | Компании с высоким уровнем цифрового интеллекта все чаще делают ставку на программное обеспечение с открытым исходным кодом. Поэтому мы приняли решение предоставить научному и бизнес-сообществу доступ к разработкам ABBYY в области машинного обучения. Это дает возможность ускорить развитие продуктов за счет обратной связи от разработчиков, а также расширить сферу применения технологий компании в проектах и отраслях. | ![]() |
Библиотека на июнь 2020 года поддерживает языки программирования C++, Java, Objective C, а в ближайшее время ABBYY добавит к ним Python. Благодаря поддержке открытого стандарта ONNX, библиотека может использовать модели из других фреймворков, позволяя разработчикам задействовать оптимальную комбинацию инструментов. Стандарт создан и поддерживается совместно Microsoft, Facebook и другими партнерами как проект с открытым исходным кодом. NeoML разрабатывается в Microsoft Visual Studio.
![]() | Один из главных приоритетов для Microsoft – развитие open source экосистемы, в особенности – в сфере искусственного интеллекта. Мы рады поддержать нашего партнера ABBYY, на этом важном этапе. NeoML откроет ряд возможностей по использованию нейросетей в бизнес-сценариях. Поддержка стандарта ONNX и размещение проекта на GitHub позволят сделать библиотеку глобально доступной и создать вокруг нее обширную экосистему разработчиков. | ![]() |
Доступ к исходным кодам можно получить на официальном репозитории проекта. Представители бизнеса, разработчики и data scientist-ы во всем мире могут предложить свои идеи по улучшению кода. NeoML можно использовать на Windows, Linux, macOS, iOS и Android. Библиотека поддерживает процессоры CPU и GPU. Открытый код фреймворка на июнь 2020 года предоставляется под лицензией Apache 2.0 License. В дальнейшем ABBYY планирует увеличивать количество доступных алгоритмов и архитектур, а также еще больше повышать скорость работы библиотеки.
Подрядчики-лидеры по количеству проектов


















Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров
























Распределение систем по количеству проектов, не включая партнерские решения

















